
Boolean	algebra	is	an	algebra	that	deals	with	Boolean	values((TRUE	and	FALSE)	.	Everyday

we	have	to	make	logic	decisions:	“Should	I	carry	the	book	or	not?”	,	“Should	I	watch	TV	or

not?”	etc.

Each	question	will	have	two	answers	yes	or	no,	true	or	false.	In	Boolean	Algebra	we	use	1	for

true	and	0	for	false	which	are	known	as	truth	values.

Truth	table:

A	truth	table	is	composed	of	one	column	for	each	input	variable	(for	example,	A	and	B),	and

one	final	column	for	all	of	the	possible	results	of	the	logical	operation	that	the	table	is	meant

to	represent	(for	example,	A	XOR	B).	Each	row	of	the	truth	table	therefore	contains	one

possible	configuration	of	the	input	variables	(for	instance,	A	=	true	B	=	false),	and	the	result

of	the	operation	for	those	values.

Logical	Operators:

In	Algebraic	function	e	use	+,-,*,/	operator	but	in	case	of	Logical	Function	or	Compound

statement	we	use	AND,OR	&	NOT	operator.

Example:	He	prefers	Computer	Science	NOT	IP.

There	are	three	Basic	Logical	Operator:

1.	 NOT

2.	 OR

3.	 AND

NOT	Operator-Operates	on	single	variable.	It	gives	the	complement	value	of	variable.

X

0 1

1 0

UNIT-4	Boolean	Logic

https://studentbro.in https://https://studentbro.in https://https://studentbro.in



OR	Operator-	It	is	a	binary	operator	and	denotes	logical	Addition	operation	and	is

represented	by	”+”	symbol

0 + 0 = 0

0 + 1 = 1

1 + 0 = 1

1 + 1 = 1

X Y X+Y

0 0 0

0 1 1

1 0 1

1 1 1

AND	Operator	–	AND	Operator	performs	logical	multiplications	and	symbol	is	(.)	dot.

0.0=0

0.1=0

1.0=0

1.1=1

Truth	table:

X Y X.Y

0 0 0

0 1 0

1 0 0

1 1 1

Basic	Logic	Gates

https://studentbro.in https://https://studentbro.in https://https://studentbro.in



A	logic	gate	is	an	physical	device	implementing	a	Boolean	function,	that	is,	it	performs	a

logical	operation	on	one	or	more	logic	inputs	and	produces	a	single	logic	output.	Gates	also

called	logic	circuits.

OR

A	gate	is	simply	an	electronic	circuit	which	operates	on	one	or	more	signals	to	produce	an

output	signal.

NOT	gate	(inverter):	The	output	Q	is	true	when	the	input	A	is	NOT	true,	the	output	is	the

inverse	of	the	input:

Q	=	NOT	A

A	NOT	gate	can	only	have	one	input.	A	NOT	gate	is	also	called	an	inverter.

AND	gate

The	output	Q	is	true	if	input	A	AND	input	B	are	both	true:	Q	=	A	AND	B	An	AND	gate	can	have

two	or	more	inputs,	its	output	is	true	if	all	inputs	are	true.

OR	gate

The	output	Q	is	true	if	input	A	OR	input	B	is	true	(or	both	of	them	are	true):	Q	=	A	OR	B

An	OR	gate	can	have	two	or	more	inputs,	its	output	is	true	if	at	least	one	input	is	true.

https://studentbro.in https://https://studentbro.in https://https://studentbro.in



Basic	postulates	of	Boolean	Algebra:

Boolean	algebra	consists	of	fundamental	laws	that	are	based	on	theorem	of	Boolean	algebra.

These	fundamental	laws	are	known	as	basic	postulates	of	Boolean	algebra.	These	postulates

states	basic	relations	in	boolean	algebra,	that	follow:

I	If	X	!=	0	then	x=1	and	If	X!=1	then	x=0

II	OR	relations(logical	addition)

0 + 0 = 0

0 + 1 = 1

1 + 0 = 1

1 + 1 = 1

III	AND	relations	(logical	multiplication)

0.0	=	0

0.1	=	0

1.0	=	0

1.1	=	1

IV	Complement	Rules	

Principal	of	Duality

This	principal	states	that	we	can	derive	a	Boolean	relation	from	another	Boolean	relation	by

performing	simple	steps.	The	steps	are:-

1.	 Change	each	AND(.)	with	an	OR(+)	sign

2.	 Change	each	OR(+)	with	an	AND(.)	sign

3.	 Replace	each	0	with	1	and	each	1	with	0

https://studentbro.in https://https://studentbro.in https://https://studentbro.in



e.g

0+0=0	then	dual	is	1.1=1

1+0=1	then	dual	is	0.1=0

Basic	theorem	of	Boolean	algebra

Basic	postulates	of	Boolean	algebra	are	used	to	define	basic	theorems	of	Boolean	algebra	that

provides	all	the	tools	necessary	for	manipulating	Boolean	expression.

1.	 Properties	of	0	and	1

a.	 0+X=X

b.	 1+X=1

c.	 0.X=0

d.	 1.X=X

2.	 Indempotence	Law

a.	 X+X=X

b.	 X.X=X

3.	 Involution	Law

4.	 Complementarity	Law

a.	

b.	

5.	 Commutative	Law

a.	 X+Y=Y+X

b.	 X.Y=Y.X

6.	 Associative	Law

a.	 X+(Y+Z)=(X+Y)+Z

b.	 X(YZ)=(XY)Z

7.	 Distributive	Law

a.	 X(Y+Z)=XY_XZ

b.	 X=YZ=(X+Y)(X+Z)

8.	 Absorption	Law

a.	 X+XY=	X

b.	 X(X+Y)=X

https://studentbro.in https://https://studentbro.in https://https://studentbro.in



Some	other	rules	of	Boolen	algebra

Demorgan’s	Theorem

A	mathematician	named	DeMorgan	developed	a	pair	of	important	rules	regarding	group

complementation	in	Boolean	algebra.

Demorgan’s	First	Theorem

It	states	that	

	

Demorgan’s	Second	Theorem

This	theorem	states	that:		

Derivation	of	Boolean	expression:-

Minterm	:	minterm	is	a	Product	of	all	the	literals	within	the	logic	System.

Step	involved	in	minterm	expansion	of	Expression

1.	 First	convert	the	given	expression	in	sum	of	product	form.

2.	 In	each	term	is	any	variable	is	missing	(e.g.	in	the	following	example	Y	is	missing	in	first

term	and	X	is	missing	in	second	term),	multiply	that	term	with	(missing	term

+complement(	missing	term)	)factor	e.g.	if	Y	is	missing	multiply	with	Y+Y”	)

3.	 Expand	the	expression.

4.	 Remove	all	duplicate	terms	and	we	will	have	minterm	form	of	an	expression.

Example:	Convert	X	+	Y

X	+	Y	=	X.1	+	Y.1

=X.(Y+Y”)	+	Y(X+X”)

=XY	+	XY”+XY+X”Y

https://studentbro.in https://https://studentbro.in https://https://studentbro.in



=XY+XY”+XY

Other	procedure	for	expansion	could	be

1.	 Write	down	all	the	terms

2.	 Put	X‟s	where	letters	much	be	inserted	to	convert	the	term	to	a	product	term

3.	 Use	all	combination	of	X‟s	in	each	term	to	generate	minterms

4.	 Drop	out	duplicate	terms

Shorthand	Minterm	notation:	Since	all	the	letters	must	appear	in	every	product,	a

shorthand	notation	has	been	developed	that	saves	actually	writing	down	the	letters

themselves.	To	form	this	notation,	following	steps	are	to	be	followed:

1.	 First	of	all,	Copy	original	terms

2.	 Substitute	0s	for	barred	letters	and	1s	for	nonbarred	letters

3.	 Express	the	decimal	equivalent	of	binary	word	as	a	subscript	of	m.

Rule	1.	Find	Binary	equivalent	of	decimal	subscript	e.g.,for	m6	subscript	is	6,	binary

equivalent	of	6	is	110.

Rule	2.	For	every	1s	write	the	variable	as	it	is	and	for	0s	write	variables	complemented	form

i.e.,	for	110	t	is	XYZ.	XYZ	is	the	required	minterm	for	m6.

maxterm:	A	maxterm	is	a	sum	of	all	the	literals	(with	or	without	the	bar)	within	the	logic

system.	Boolean	Expression	composed	entirely	either	of	Minterms	or	Maxterms	is	referred	to

as	Canonical	Expression.

Canonical	Form:	Canonical	expression	can	be	represented	is	derived	from

i.	 Sum-of-Products(SOP)	form

ii.	 Product-of-sums(POS)	form

Sum	of	Product	(SOP)

1.	 Various	possible	input	values

2.	 The	desired	output	values	for	each	of	the	input	combinations

X Y R

https://studentbro.in https://https://studentbro.in https://https://studentbro.in



0 0 X’Y’

0 1 X’Y’

1 0 XY’

1 1 XY

Product	of	Sum	(POS)

When	a	Boolean	expression	is	represented	purely	as	product	of	Maxterms,	it	is	said	to	be	in

Canonical	Product-of-Sum	from	of	expression.

X Y Z Maxterm

0 0 0 X+Y+Z

0 0 1 X+Y+Z’

0 1 0 X+Y’+Z

0 1 1 X+Y’+Z’

1 0 0 X’+Y+Z

1 0 1 X’+Y+Z’

1 1 0 X’+Y’+Z

1 1 1 X’+Y’+Z’

Minimization	of	Boolean	expressions:-

After	obtaining	SOP	and	POS	expressions,	the	next	step	is	to	simplify	the	Boolean	expression.

There	are	two	methods	of	simplification	of	Boolean	expressions.

1.	 Algebraic	Method

2.	 Karnaugh	Map

Sum	Of	Products	Reduction	using	K-	Map

https://studentbro.in https://https://studentbro.in https://https://studentbro.in



For	reducing	the	expression	first	mark	Octet,	Quad,	Pair	then	single.

Pair:	Two	adjacent	1’s	makes	a	pair.

Quad:	Four	adjacent	1’s	makes	a	quad.

Octet:	Eight	adjacent	1’s	makes	an	Octet.

Pair	removes	one	variable.

https://studentbro.in https://https://studentbro.in https://https://studentbro.in



Quad	removes	two	variables.

Octet	removes	three	variables.

Reduction	of	expression:	When	moving	vertically	or	horizontally	in	pair	or	a	quad	or	an

octet	it	can	be	observed	that	only	one	variable	gets	changed	that	can	be	eliminated	directly

in	the	expression.

For	Example

In	the	above	Ex

Step	1	:	In	K	Map	while	moving	from	m7	to	m15	the	variable	A	is	changing	its	state	Hence	it

can	be	removed	directly,	the	solution	becomes	B.CD	=	BCD.	This	can	be	continued	for	all	the

pairs,	Quads,	and	Octets.

Step	2	:	In	K	map	while	moving	from	m0	to	m8	and	m2	to	m10	the	variable	A	is	changing	its

state.	Hence	B’	can	be	taken	similarly	while	moving	from	m0	to	m2	and	m8	to	m10	the

variable	C	is	changing	its	state.	Hence	D’	can	be	taken;	the	solution	becomes	B’.D’

The	solution	for	above	expression	using	K	map	is	BCD	+	B’D’.

Example	1:	Reduce	the	following	Boolean	expression	using	K-Map:

F(P,Q,R,S)=Σ(0,3,5,6,7,11,12,15)

Sol:	This	is	1	quad,	2	pairs	&	2	lock

Quad(m3+m7+m15+m11)	reduces	to	RS

Pair(m5+m7)	reduces	to	P‟QS
Pair	(m7+m6)	reduces	to	P‟QR
Block	m0=P‟Q‟R‟S‟
M12=PQR‟S‟

https://studentbro.in https://https://studentbro.in https://https://studentbro.in



Hence	the	final	expressions	is	F=RS	+	P‟QS	+	P‟QR	+	PQR‟S‟	+	P‟Q‟R‟S‟

Example	2:	Reduce	the	following	Boolean	expression	using	K-Map:

F(A,B,C,D)=Π(0,1,3,5,6,7,10,14,15)

Sol:	Reduced	expressions	are	as	follows:

For	pair	1,	(A+B+C)

For	pair	2,	(A‟+C‟+D)
For	Quad	1,	(A+D‟)
For	Quad	2,	(B‟+C‟)
Hence	final	POS	expression	will	be

More	about	Gates:

NAND	gate	(NAND	=	Not	AND)

This	is	an	AND	gate	with	the	output	inverted,	as	shown	by	the	'o'	on	the	output.	The	output	is

true	if	input	A	AND	input	B	are	NOT	both	true:	Q	=	NOT	(A	AND	B)	A	NAND	gate	can	have	two

or	more	inputs,	its	output	is	true	if	NOT	all	inputs	are	true.

	

NOR	gate	(NOR	=	Not	OR)

https://studentbro.in https://https://studentbro.in https://https://studentbro.in



This	is	an	OR	gate	with	the	output	inverted,	as	shown	by	the	'o'	on	the	output.	The	output	Q	is

true	if	NOT	inputs	A	OR	B	are	true:	Q	=	NOT	(A	OR	B)	A	NOR	gate	can	have	two	or	more

inputs,	its	output	is	true	if	no	inputs	are	true.

EX-OR	(EXclusive-OR)	gate

The	output	Q	is	true	if	either	input	A	is	true	OR	input	B	is	true,	but	not	when	both	of	them	are

true:	Q	=	(A	AND	NOT	B)	OR	(B	AND	NOT	A)	This	is	like	an	OR	gate	but	excluding	both	inputs

being	true.	The	output	is	true	if	inputs	A	and	B	are	DIFFERENT.	EX-OR	gates	can	only	have	2

inputs.

AND	NOT	B)	OR	(B	AND	NOT	A)	This	is	like	an	OR	gate	but	excluding	both	inputs	being	true.

The	output	is	true	if	inputs	A	and	B	are	DIFFERENT.	EX-OR	gates	can	only	have	2	inputs.

EX-NOR	(EXclusive-NOR)	gate

This	is	an	EX-OR	gate	with	the	output	inverted,	as	shown	by	the	'o'	on	the	output.	The	output

Q	is	true	if	inputs	A	and	B	are	the	SAME	(both	true	or	both	false):

Q	=	(A	AND	B)	OR	(NOT	A	AND	NOT	B)	EX-NOR	gates	can	only	have	2	inputs.

Summary	truth	tables

The	summary	truth	tables	below	show	the	output	states	for	all	types	of	2-input	and	3-input

gates.

https://studentbro.in https://https://studentbro.in https://https://studentbro.in



NAND	gate	equivalents

The	table	below	shows	the	NAND	gate	equivalents	of	NOT,	AND,	OR	and	NOR	gates:

https://studentbro.in https://https://studentbro.in https://https://studentbro.in



introduction	to	Boolean	Algebra

(Boolean	Algebra)

​​​​​​​Boolean	Algebra:	is	the	algebra	of	logic	that	deals	with	binary	variables	and	logic

operations.

Boolean	Variable:	A	boolean	variable	is	a	symbol,	usually	an	alphabet	used	to	represent	a

logical	quantity.	It	can	have	a	0	or	1	value

Boolean	Function:	consists	of	binary	variable,	constants	0	&	1,	logic	operation	symbols,

parenthesis	and	equal	to	operator.

Complement:	A	complement	is	the	inverse	of	a	variable	and	is	indicated	by	a'	or	bar	over

the	variable.	A	binary	variable	is	one	that	can	assume	one	of	the	two	values	0	and	1.

Literal:	A	Literal	is	a	variable	or	the	complement	of	a	variable

Truth	table:	is	atable	which	represents	all	the	possible	values	of	logical	variables	along	with

all	the	possible	results	of	the	given	combinations	of	values.

List	of	axioms	and	theorems:

Identity 		A	+	0	=	A 		A.	1	=	A

Complement 		A	+	A'	=	1 		A.	A'	=	0

Commutative 		A	+	B	=	B	+	A 		A.	B	=	B.	A

Assosiative 		A	+	(B	+	C)	=	(A	+	B)	+	C 		A.	(B.	C)	=	(A.	B).	C

Distributive 		A.	(B	+	C)	=	A.	B	+	A.	C 		A	+	(B.	C)	=	(A	+	B).	(A	+	C)

Null	Element 		A	+	1	=	1 		A.	0	=	0

Involution 		(A')'	=	A 	

Indempotency 		A	+	A	=	A 		A.	A	=	A

Absorption 		A	+	(A.	B)	=	A 		A.	(A	+	B)	=	A

https://studentbro.in https://https://studentbro.in https://https://studentbro.in



3rd	Distributive	 		A	+	A'.	B	=	A	+	B 		

De	Morgan's 		(A	+	B)'	=	A'.	B' 		(A.	B)'	=	A'.	B'

(Boolean	Functions	and	Reduce	Forms)

A	Boolean	function	can	be	expressed	algebraically	from	a	given	truth	table	by	forming	a

minterm	and	then	taking	the	OR	of	all	those	terms.

Minterm:	An	n	variable	minterm	is	a	product	term	with	n	literals	resulting	into	1.

Maxterm:	An	n	variable	maxterm	is	a	sum	term	with	n	literals	resulting	into	0.

A	sum-of-product	expression	is	logical	OR	of	two	or	more	AND	terms

A	product-of-sum	is	logical	AND	of	two	or	more	OR	terms

If	each	term	in	SOP	/	POS	form	contains	all	the	literals,	then	it	is	canonical	form	of

expression.

To	convert	from	one	canonical	form	to	another,	interchange	the	symbol	and	list	those

numbers	missing	from	the	original	form.

The	Karnaugh	map	(K-map)	provides	a	systematic	way	of	simplifying	Boolean	algebra

expressions.

For	minimizing	a	given	expression	in	SOP	form,	after	filling	the	k	map	look	for	combination

of	adjascent	one's.

Combine	these	one's	in	such	a	way	that	the	expression	is	minimum.

For	minimizing	expression	in	POS	form	we	mark	zeros,	from	the	truth	table,	in	the	map.

Combine	zeros	in	such	a	way	that	the	expression	is	minimum.

Sum	Term:	is	a	single	literal	or	the	logical	sum	of	two	or	more	literals.

Product	term:	is	a	single	literal	or	the	logical	product	of	two	or	more	literals.

(Application	of	Boolean	Logic)

Gate	is	an	electronic	system	that	performs	a	logical	operation	on	a	set	of	input	signal(s).	They

https://studentbro.in https://https://studentbro.in https://https://studentbro.in



are	the	building	blocks	of	Integrated	Circuits.

An	SOP	expression	when	implemented	as	circuit	-	takes	the	output	of	one	or	more	AND	gates

and	OR's	them	together	to	create	the	final	output.

An	POS	expression	when	implemented	as	circuit	-	takes	the	output	of	one	or	more	OR	gates

and	AND's	them	together	to	create	the	final	output.

Universal	gates	are	the	ones	which	can	be	used	for	implementing	any	gate	like	AND,	OR	and

NOT,	or	any	combination	of	these	basic	gates;	NAND	and	NOR	gates	are	universal	gates.

Implementation	of	a	SOP	expression	using	NAND	gates	only

1)	All	1st	level	AND	gates	can	be	replaced	by	one	NAND	gate	each.

2)	The	output	of	all	1st	level	NAND	gate	is	fed	into	another	NAND	gate.	This	will	realize	the

SOP	expression

3)	If	there	is	any	single	literal	in	expression,	feed	its	complement	directly	to	2nd	level	NAND

gate.	Similarly,	POS	using	NOR	gate	can	be		implemented	by	replacing	NAND	by	NOR	gate.

Implementation	of	POS	/	SOP	expression	using	NAND	/	NOR	gates	only.

1)	All	literals	in	the	first	level	gate	will	be	fed	in	their	complemented	form.

2)	Add	an	extra	NAND	/	NOR	gate	after	2nd	level	gate	to	get	the	resultant	output.

https://studentbro.in https://https://studentbro.in https://https://studentbro.in


	1. CPP-Boolean Logic Part-2.pdf (p.1-13)
	2. Computer Sc 04 introduction to Boolean Algebra.pdf (p.14-16)

